
Példák: Magnetosztatika, mágneses anyagok

I. ELMÉLETI ÖSSZEFOGLALÓ

1. Mágneses dipólus:
A áram elrendezéstől kellően messze, r � d, ahol d az áram elrendezés átmérője, távolságra vizsgálva a mágneses
vektorpotenciált az első rendű tag ∼ 1

r kiesik sztatikus esetben ⇔ ∇ · j = −∂tρ = 0, mı́g a másorendű tagot

∼ 1
r2 nevezzük mágneses dipólusnak

m =

ˆ
d3r j(r)× r (1)

A(r) =
µ0

4π

m× r

r3
. (2)

Vékony egyenes vezető esetén, ahol d3r j(r) = dr I:

m = I

ˆ
r× dr⇒ zárt görbe esetén: m = I

ˆ
F

d2f . (3)

2. Mágneses skalárpotenciál:
Megszoŕıtva vizsgálódásunkat arra térrészre, ahol ∇ ×H = 0, az elektrosztatikus potenciál mintájára beveze-
thetjük a mágneses skalárpotenciált:

H = −∇Ψm , (4)

azonban, ha ezt olyan térrészben tesszük, mely nem egyszeresen összefüggő, azaz van benne egy szingu-
laritás, azaz a tartományt keresztezi egy áram, akkor gondoskodnunk kell a skalárpotenciálnak egyrészt az
egyértékűségéről, illetve arról, hogy legyen benne egy ugrás, amivel visszakapjuk az Ampere törvényt:˛

dr H = −
˛

dr∇Ψm = Ψm(r0 − 0)−Ψm(r0 + 0) ≡ µ0I , (5)

ahol r0 egy tetszőleges kezdőpont a zárgörbén és a ±0 jelölés indikálja, hogy történt egy ugrás a függvény
értékében a zárt görbe mentén, amely defińıció szerint arányos a körbezárt árammal.
Jó példa erre a végtelen egyenes vezető:

H =
µ0I

2πr
ϕ̂ , (6)

Ψm = −µ0I

2π
ϕ . (7)

Ekkor telejsül, hogy H = −∇Ψm, illetve az is, hogy tetszőleges az origót/áramot körbezáró görbe mentén
vett integrálja −∇Ψm-nek éppen Ψm(0) − Ψm(2π) = µ0I, mindazonáltal, hogy a skalárpotenciál továbbra is
egyértékű!

3. Mágneses tér anyag jelenlétében:
A legalacsonyabb rendű közeĺıtés a mágnesezhető anyagok modellezésére, egy mágneses dipólsűrűség bevezetése:

m =

ˆ
d3r M(r) (8)

Ekkor a teljes mágneses tér szétválaszható a szabad áramok által keltett tér és a polarizált áramok átlal keltett
tér összegére:

B = µ0(H + M) (9)

ahol defińıció szerint

∇×B = µ0jtot (10)

∇×H = jsz (11)

∇×M = jpol (12)
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Továbbá a határfeltételek ekkor egy tetszőleges mágnesezhető anyag S határán n normálvektorral az adott
felületi pontokban:

n ·(Bk −Bb) = 0⇔ Bn folytonos⇔ ∇ ·B = 0 (13)

Hk −Hb = n×Ksz ⇔ Ht folytonos, ha nincsenek felületi szabad áramok ⇔ ∇×H = jsz (14)

Bk −Bb = n×Kpol (15)

Ahol az elektrosztatikához hasonlóan a felületi áramsűrűség kiszámı́tható a mágnesezetttség felületi értékével:

Kpol =(Mk −Mb)× n . (16)

II. KÖNYVTÁMASZ ALAKÚ HUROK MÁGNESES DIPÓLMOMENTUMA

Adott az ábrán látható vezető alakzat (hurok), amelynek minden éle w hosszúságú. A hurokban I áram folyik.
Határozza meg az áramvonal mágneses dipólmomentumát!

FIG. 1.

Megoldás:
Alkalamzzuk a mágneses dipólusra levzetett formulát egy köráram esetén:

m =

ˆ
d3r j(r)× r = I

˛
∂F

dr× r = I

ˆ
F

d2f (17)

Ahol az utolsó esetben tetszőleges felület esetén az infinitezimális felületdarab vektorokat is összegeznünk kell!
Esetünkben alkalmazzuk a szuperpoźıció elvét, amikor is veszünk egy-egy zárt xz és xy śıkbeli téglalapot, amik
területe w2/2 és irányuk x̂, illetve ẑ a kettő elrendzés szuperpoźıciójában éppen kiesik x tengelyen folyó áram,
ami visszadja az eredeti elrendezést, illetve az egyes darabok mágneses dipolmomentumai az előadáson tanultak
alapján egyszerűen csak a felület normálisával párhuzamos irányú és az áram, illetve felület nagyságának szorzatával
megegyező hosszúságú vektor, mivel

¸
∂F

dr× r =
´
F

d2f

m = Iw2(x̂ + ẑ) (18)

III. MÁGNESEZETT GÖMB

Adott egy R sugarú gömb. amelyben homogén és állandó M = M ẑ mágnesezettségű permanens mágneses anyag
van (ún.: “gömbmágnes”). Ennek mágneses tere ismert.

A gömbön belül (legyen ez a 2-es tartomány):

H2 = −1

3
M, B2 = µ0

2

3
M. (19)

A gömbön ḱıvül (legyen ez az 1-es tartomány) a mágneses skalár potenciál egy m = mẑ pontszerű dipólus terével
adható meg, azaz

Φ1(r) =
1

4π

m cos θ

r2
. (20)
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Ahol (r, θ, φ) gömbi koordináták. Valamint

m =
4πR3

3
M. (21)

1. Helyezzük el ezt a gömbmágnest egy B0 = µ0H0 = B0ẑ homogén mágneses térbe úgy, hogy az M ne változzon
meg (permanens mágnesről van szó)! Határozzuk meg az eredő B-t és a H-t a gömb belsejében!

2. Legyen most a gömbmágnes anyaga egy lineárisan mágnesezhető anyag, azaz amelyre igaz, hogy B = µH =
µ0µrH. Az első kérdésre adott válasz ismeretében határozza meg az M és a B0 közötti kapcsolatot!
Megjegyzés: A kapott összefüggés elektroszatikus analógiájával már találkoztunk a Clausius-Mosotti egyenlet
tárgyalásakor.

3. Vizsgáljuk meg, hogy a második kérdésben tárgyalt elrendezésnél mi a kapcsolat a gömbmágnes belsejében lévő
B és a B0 között paramágneses és diamágneses anyag esetén! Vázoljuk fel a mágneses indukcióvonalakat!

4. Adjuk meg a felületi polarizált áramokat és a vektorpotenciált is az első esetben!

Megoldás:

1. Tudjuk, hogy mágneses anyag esetén a következő összefüggés áll fent:

B = µ0(H + M) (22)

Esetünkben a teljes mágneses indukció, a mágnesezettségből adódó járulék és a külső tér szuperpoźıciójából
ered:

B = B2 + B0 = µ0
2

3
M + B0 (23)

Innen, mivel a gömb mágnesezettsége nem változik meg egyszerűen megadható a mágneses térerősség:

H =
1

µ0
B−M =

1

µ0
B0 −

1

3
M (24)

2. Esetünkben csak ki kell fejezni B0 és M kapcsolatát:

H =
1

µ
B =

1

µ

(
µ0

2

3
M + B0

)
=

1

µ0
B0 −

1

3
M⇒M =

3(µr − 1)

µ0(2 + µr)
B0 (25)

3. Most az előző ősszefüggést B és B0-re ı́rjuk fel:

B = µ0
2

3
M + B0 =

3µr
2 + µr

B0 (26)

Paramágnes esetén µr ≥ 1, vagyis B ≥ B0, egy erősebb mágneses teret kapunk vissza, mı́g diamágnes esetén,
µr ≤ 1⇒ B ≤ B0, gyengébb tér adódik vissza!

4. Használva a tanult összefüggést, K = n̂ ×M, ahol azonban most henger koordinátákban n̂ = r̂, illetve ekkor

rr̂× z =(sin θ sinϕ,− sin θ cosϕ, 0)
T ≡ ρϕ̂, ahol ez az egységvektor most gömbi koordinátákban értendő, innen

egyszerűen

K = M0ρϕ̂ . (27)

A vektorpotenciál pedig belül r < R (ismét szimmetriai megfontolásokból A = Aϕϕ̂, de most henger-
koordinátákban kifejezve, ami a gömbön belül minden pontban érvényes lesz):

∇×A =
1

ρ
∂ρ(ρAϕ) = µ0

2

3
M→ A =

µ0M0

3
ρϕ̂ , (28)

ahol az integrálás során bejövő konstansokat úgy válaszottuk meg, hogy nullában eltűnjön a vektorpotenciál.
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Kı́vülről a gömb defińıció szerint egy az m = 4
3πR

3M által jellemzett mágneses dipólusnak látszódik, aminek a
vektorpotenciálja defińıció szerint:

A =
µ0

4π

m× r

r3
=
µ0

4π

m sin θ

r2
ϕ̂ =

µ0MR3ρ

3r3
ϕ̂ (29)

ahol most r =
√
x2 + y2 + z2 ”szokásos” gömbi koordinátarendszerbeli sugár, r =(sin θ cosϕ, sin θ cosϕ, cos θ),

illetve ρ =
√
x2 + y2 a polár sugár és ϕ̂ is gömbi koordináta rendszerben értendő! Látható, hogy teljesül a

folytonossági feltétel, hiszen ha r = R, akkor a külső esetben az érték A = µ0M0ρ
3 ϕ̂, ami éppen megegyezik a

belsővel a határon!

IV. MÁGNESEZETTT HENGER

Adott egy z irányban végtelen hosszú, R sugarú henger, amelyen belül a mágnesezettség:

M = M0
r2

R2
ϕ̂

a hengeren ḱıvül a mágnesezettség zérus.

1. Határozza meg a mágnesezettségből a kötött áramsűrűséget mindenhol a térben!

2. Határozza meg a hengeren átfolyó kötött áram nagyságát!

3. Adja meg az integrális Ampere-törvényt a kötött áramra!

4. A kapott egyenlet alapján adja meg a mágneses indukció vektort mindenhol a térben!

5. Határozza meg a vektorpotenciált Coulomb-mértékben mindenhol a térben!

Megoldás:

1. Használjuk a a tanult összefüggést, miszerint

∇×M = jpol (30)

a mágnesezettség irányából adódóan rögtön látszik, hogy csak ẑ irányú lehet az áram sűrűség, amire pedig a
gömbi rotáció alapján a következő adódik:

∇×M(r) =

(
1

r
∂ϕMz − ∂zMϕ

)
r̂ +(∂zMr − ∂rMz) ϕ̂ +

1

r
(∂r(rMϕ)− ∂ϕMr) ẑ =

1

r
∂r(rMϕ) =

3M0r

R2
ẑ (31)

2. Ekkor az átfolyó áram nagysága, egyszerűen csak a keresztmetszetre vett felületi integrál:

I = 2π

ˆ R

0

drM0
3r2

R2
= 2πM0R . (32)

3. Az integrális Ampere törvény alapján r < R esetén:

2π

ˆ r

0

dr′M0
3(r′)

2

R2
= 2πM0

r3

R2
= 2πrMϕ(r)→M = M0

r2

R2
ϕ̂ . (33)

4. Most az polarizált áram ismeretében hasonlóan meg lehet mondani a mángeses indukció vektort, mivel nicsnenek
szabadáramok, a követkző adódik, illetve hasonló szimmetriai megfontolásokból

2πµ0

ˆ r

0

dr′M0
3(r′)

2

R2
= 2πµ0M0

r3

R2
= 2πrBϕ(r)→ B = µ0M0

r2

R2
ϕ̂ , (34)

ha r < R.
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A hengeren ḱıvül pedig, egyszerűen visszakapjuk az Ampere törvényből az egyenes vezető terét, viszont itt
figyelembe kell vennünk a megjelenő felületi áramokat is, amit az elektrosztatikához hasonlóan a mágnesezettésg
felületi értékéből adhatunk meg

K = M× n̂(R) = M0ẑ , (35)

ahonnan az indukcióvektor:

B =
2µ0M0R

r
ϕ̂ . (36)

5. A vektorpotenciál esetünkben könnyen származtatható az indukcióvektorból, mivel ∇×A = −∂rAzϕ̂, ahonnan

Az = 2µ0M0 ln(r/R) , ha r > R (37)

Az = µ0M0
r3 −R3

3R2
, ha r < R (38)

ahol második tagban őgy vélaszottuk meg a kosntans eltolást, hogy a határon folytonos maradjon a vektorpo-
tenciál.

A vektorpotenciál divergenciája:

∇ ·A = ∂zAz = 0 , (39)

vagyis Coulomb mértékben vagyunk.

V. SÍKLAP ÉS DIPÓLUS

Egy 2a vastagságú śıklapban J = J0ẑ áram folyik. A śıklapot felezi az yz śık, azaz x = −a és x = a śıkok között
van. Egy mágneses dipólus m = m0x̂ van az origóban.

1. Határozza meg a dipólusra ható erőt!

2. Határozza meg a dipólusra ható erőt, ha a dipólmomentum m = m0ŷ!

3. Az elektrosztatikus esetben F = ∇(p ·E) és F = (p ·∇)E ekvivalensek, de ez nem igaz a mágneses analógjukra.
Miért? Számolja ki a (m · ∇)B kifejezést a fenti két esetre!

Megoldás:

1. Először az indukció vektort határozzuk meg! Tudjuk, hogy egy x-re, merőleges śıkban, x = a-ban átfolyó felületi
áramsűrűség által keltett tér ∼ B = µ0Ksgn(x− a) ŷ, ahol K = kẑ ≡ J0dx ẑ. Ezeket felösszegezve egyszerűen
a śıkon ḱıvüli tér:

Bk = µ0J0asgn(z) ŷ, ha |x| ≥ a (40)

Mı́g a belső tér hasonló módon számolható, ki de figyelembe kell vennünk, hogy egy adott x pontban a két oldalon
folyó áramok ellentétes irányú teret keltenek, vagyis ekkor összesen egy 2x magasságú térfogat tartomány fogja
jelenteni a különbséget:

Bb = µ0J0x ŷ (41)

Most kiszámoljuk ez alapján és az előadáson levezetett formula seǵıtségével az origóba helyezett m = m0ŷ
dipólusra ható erőt:

F = grad(m ·Bb)⇒ Fi = mk∂i(Bb)k

∣∣∣
r=0

= mkµ0J0δk,2δi,2 = 0 (42)

mivel m-nek csak x irányú komponense van, mk = δk,1m0.
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2. m = m0ŷ irányú dipólus esetén triviálisan

Fi = mkµ0J0δk,2δi,2 = m0µ0J0δi,2 ⇒ F = m0µ0J0 x̂ (43)

3. Elektrosztatikában egy töltéseloszlásra ható erő általános kifejezéséből kiindulva a következő módon tudjuk
megadni az oriban lévő dipólusra ható erőt egy tetszőleges külső tért esetén

Fi =

ˆ
d3r ρ(r)Ei(r) =

ˆ
d3r ρ(r)(Ei(0) + rl∂lEi(0)) =

ˆ
d3r = QE0(0) +(p∇)Ei(0) (44)

A feladatban kíırt egyenlőség a következő módon látható be:

pl(∂lEi − ∂iEl) = plεlik(rot E)k = 0 (45)

mivel az elektromos tér rotáció mentes, vagyis pl∂lEi = pl∂iEl ⇔(p∇) E = ∇(pE). Látható, hogy ha elvetjük a
rotációmentességet, akkor a fenti álĺıtás nem lesz igaz! Vagyis magnetosztatika esetén nem igaz, hogy(m∇) B =
∇(mB), ahol ismét feĺırhatjuk a dipólusra ható erőt egy általános árameloszlásból származtatva tetszőleges
külső elektromos tér esetén:

Fi =

ˆ
d3r J(r)×B(r) = · · · = ∂imlBl ≡ ∂i(mB) (46)

illetve a fentebbi érvelés valóban nem állja meg a helyét, mivel

ml(∂lBi − ∂iBl) = mlεlik(rot B)k = µ0mlεlikJk ⇔(m∇) B−∇(mB) = µ0 J×m (47)

A mi esetünkben a két dipólus irányra:

(m∇) B =

{
m0∂xµ0J0xŷ = m0µ0J0ŷ, m = m0x̂

m0∂yµ0J0xŷ = 0, m = m0ŷ
(48)

Láthatóan éppen ford́ıtott módon kapjuk meg az eredményeket!

VI. DIAMÁGNESESSÉG NAÍV MODELLJE

Vegyük egy elektron pályáját az atommag körül körpályának. Az elektront magát vegyük egy köráramnak:

I =
e

T
=

ev

2πR
, (49)

azaz a pályához rendelhető dipólmomentum

m = −1

2
evRẑ. (50)

A keringő elektronra hat az atommag vonzereje, azaz

1

4πε0

e2

R2
= me

v2

R
. (51)

Ha az anyagot mágneses térbe helyezzük, egy további erő, a Lorentz erő is hat az elektronra, ı́gy

1

4πε0

e2

R2
+ eṽB = me

ṽ2

R
, (52)

ahol ṽ a mágneses erő hatására módosult sebesség.

1. Mutassa meg, hogy ha ∆v = ṽ − v, akkor

∆v =
eRB

2me
. (53)

Írja fel a dipólmomentum változását (∆m) is, a mágneses tér (B) függvényében!
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2. A fenti modell alapján adjon egy becslést a réz szuszceptibilitására (χm)! A mért érték χm = −9.7 × 10−6,
Handbook of Chemistry and Physics, 67th ed. (Boca Raton: CRC Press, Inc., 1986).

Megoldás:

1. Elektronok körárama, mint klasszikus részecskék körmozgása, I = e
T = ev

2πR , amihez m = − 1
2evRẑ, mı́g a

keringő elektronra ható vonzóerő az atommag által 1
4πε0

e2

R2 = me
v2

R , amihez még a Lorentz erő is társulhat,
összességében a következőt adva:

1

4πε0

e2

R2
+ eṽB = me

ṽ2

R
(54)

A mágneses tér nélküli sebesség könnyedén megadható v = e√
4πε0Rme

, mı́g ṽ a következőképpen adható meg

egy másodfokú egyenlet megoldásaként:

ṽ =
eBR

2me
+

√(
eBR

2me

)2

+
e2

4πε0Rme
≈ eBR

2me
+

e√
4πε0Rme

, (55)

ahonnan ∆v ≈ eRB
2me
⇒ ∆m = − 1

2e∆vRẑ = − e
2BR2

4me
ẑ.

2. Ehhez szükségünk van a réz anyagsűrűségére, ami N ≈ 1030 1/m3, ahonnan ∆M = Nm ⇒ χm ∼ µ0N∆m ∼
µ0N e2R2

me
, ahol R ∼ 1, 35 10−10 ⇒ χm ∼ 5× 10−6.


