
Példák: Magnetosztatikai alapok

Megjegyzés: az összes konkrétan kiszámolt vektorpotenciálról és mágneses mezőről érdemes rajzot késźıteni!

I. ELMÉLETI ÖSSZEFOGLALÓ

• Biot-savart törvény

B(r) =
µ0

4π

ˆ
d3r′

j(r′)×(r− r′)

|r− r′|3
(1)

Kihasználva, hogy r−r′
|r−r′|3 = −∇

(
1

|r−r′|

)
, illetve, hogy tetszőleges f(r) esetén (j(r′) × ∇f(r))i = εikljk∂lf =

−εilk∂l(j · f)k = −∇× (j(r′) · f(r)).

B(r) = ∇× µ0

4π

ˆ
d3r′

j(r′)

|r− r′|
= ∇×A(r)⇒ A(r) =

µ0

4π

ˆ
d3r′

j(r′)

|r− r′|
(2)

Előadáson tanultakból ilyenkor rögtön következik, hogy ∇ ·A(r) = 0. Azonban, mivel az egyetlen dolog, ami
fizikai tartalommal b́ır a ∇×A(r) = B, ezt azonban nem csak a fenti vektorpotenciál eléǵıti ki, mivel tetszőleges
χ skalártér esetén ∇×(∇χ) = 0, azaz mindig élhetünk egy mértékszabadsággal

A′(r) = A(r) +∇χ . (3)

A Biot-Savart törvényből levezetett képlet fontos további tulajdonsága, hogy ∇ × B = µ0j, illetve ∇ · B = 0.
Továbbá a vektorpotenciál fenti speciális alakjából rögtön látható, hogy

∆A = −µ0j⇔ ∆

(
1

|r− r′|

)
= −4πδ(r− r′) . (4)

Azaz, ”úgy viselkedik mint a Laplace-egyenlet, csak vektoros alakban”

• Ford́ıtott irányból vizsgálva a mágneses teret a következőt mondhatjuk: feltesszük, hogy tudjuk ∇ · B = 0 és
∇×B = µ0j, amiből rögtön következik, hogy kereshető

B = ∇×A (5)

alakban. Azonban ebből még korántsem következik, hogy ∇ ·A = 0, csupán ismét azt tudjuk, hogy tetszőleges
A′ = A +∇χ teljeśıti a megkövetelt összefüggést. Coulomb mértéknek nevezzük, amikor teljesül a ∇ ·A = 0
összefüggés. Ekkor felhasználva a szintén előre ismert ∇×B = µ0j összefüggést azt kapjuk, hogy

∇×(∇×A) = ∇(∇ ·A)−∆A = µ0j⇒ ∆A = −µ0j (6)

amely Poisson egyenlet partikuláris megoldását egyszerűen meg tudjuk adni

A(r) =
µ0

4π

ˆ
d3r′

j(r′)

|r− r′|
. (7)

Vegyük észre, hogy a mértékszabadság alakja az elektromos skalár potenciál esetén jóval korlátozotabb volt,
mivel ott csa kegy kosntans elotlás erejéig kaptuk vissza ugyanaza fizikai mennyiséget és ı́gy mindig érvényes

volt az analóg módon megadott alakja a partikuláris megoldásnak, Φ(r) = µ0

4π

´
d3r′

ρ(r′)
|r−r′| és Φ′(r) = Φ(r) + Φ0

• Biot-Savart törvény egyenes vezető esetén, d3r′j(r′) = dr′I

B(r) =
µ0I

4π

ˆ
dr′

r− r′

|r− r′|3
(8)
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II. A VEKTORPOTENCIÁL REKONSTRUKCIÓJA

Vegyük észre a formális analógiát a magnetosztatika Maxwell-egyenletei

rot B(r) = µ0j(r) div B(r) = 0 (9)

és a vektorpotenciálra Coulomb-mértékben érvényes összefüggések:

rot A(r) = B(r) div A(r) = 0 (10)

között!

1. Írja fel a Biot-Savart törvény analógját arra, hogyan lehet a vektorpotenciált előálĺıtani a mágneses mező is-
meretében!

Megoldás:
Tudjuk, hogy egy dr′ infinitezimális nagyságú szakaszban átfolyó áram a következő mágneses teret kelti:

dB(r) =
µ0

4π
I

dr′ ×(r− r′)

|r− r′|3
, (11)

amit, ha úgy ı́runk fel, hogy a szakasz darab árama egy dA′ felületen átfolyó j(r′) felületi áramsűrűségből ered
és összegzünk a vizsgált elrendezés minden szakasz darabjára, a következőt kapjuk:

B(r) =
µ0

4π

ˆ
d3r′

j(r′)×(r− r′)

|r− r′|3
. (12)

Ezzel analóg módon adható meg a vektorpotenciál, ahol csak le kell cserélnünk a µ0j(r) tagot B(r)-re:

A(r) =
1

4π

ˆ
d3r′

B(r′)×(r− r′)

|r− r′|3
=

µ0

(4π)2

ˆ
d3r′d3r′′

(j(r′)×(r− r′))×(r′ − r′′)

|r− r′|3|r′ − r′′|3
. (13)

Vegyük észre, hogy ha fenti egyenletbe béırjuk B(r) integrális alakját, akkor a

2. Mi az Ampere-féle gerjesztési törvény megfelelője?
Megoldás:
Az Ampere-törvény az integrális alakja a Biot-Savart törvénynek:

rot B(r) = µ0j(r)⇒
ˆ
F

d2f rotB(r) =

˛
∂F

dr B(r) = µ0

ˆ
F

d2f j(r) = µ0I . (14)

Ismét lecserélve a µ0j(r) tagot B(r)-re a következő analóg kifejezést kapjuk:
˛
∂F

dr A(r) =

ˆ
F

d2f B(r) . (15)

III. VÉGTELEN HOSSZÚ SZOLENOID ÉS TOROID

Adott egy R sugarú, kör keresztmetszetű szolenoid, melynek tengelye a z koordinátatengely. A végtelen hosszúnak
vehető tekercs belsejében a mágneses térerősség ismert és homogénnek tekinthető, az egységnyi hosszra eső menetszáma
pedig n.

1. Mennyi a mágneses indukció a tekercs belsejében és azon ḱıvül?

2. Határozza meg a vektorpotenciált a tekercsen belül és ḱıvül! Késźıtsen ábrát a mágneses mezőről és a vektor-
potenciálról!

3. Számolja ki a vektorpotenciál rotációját a tekercsen belül és ḱıvül! Értelmezze az eredményt!

4. Tegyük fel, hogy a szolenoid keresztmetszete nem kör alakú! Mutassa meg, hogy a mágneses tér a mágneses tér
egy végtelen hosszú szolenoidon belül a tengellyel párhuzamos, a keresztmetszet alakjától függetlenül. Mekkora
a tér nagysága kivül, illetve belül?
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5. Határozza meg egy toroid tekercs (zárt kör alakba hajĺıtott szolenoid) mágneses terét! Homogén-e ez a mező?

Megoldás:

1. A mágneses tér a mi közeĺıtésünkben állandónak és z irányúnak vehető, B(r) = Bẑ. Ekkor használjuk az
Ampere-törvényt a tér nagyságának meghatározásához, amihez tekintsük azt a γ zárt görbét, ami párhuzamos
a z tengellyel és a merőlegesen folytatódik a tekercsen ḱıvül, majd a másik párhuzamos része nagyon messze
van a tekercstől, annak érdekében, hogy a tekercsen ḱıvüli részein nullának vehessük jó közeĺıtéssel a mágneses
teret:

˛
γ

dr B(r) = LB = µ0LnI ⇒ B(r) = µ0nI ẑ . (16)

A tekercsen ḱıvüli teret pedig egy olyan γ görbére való vonalintegrállal adhatjuk meg, ahol a görbe egy r > R
sugarú koncentrikus kör és merőleges a z tengelyre. Ekkor az átfolyó áram egyszerűen csak a tekercsen végig
folyó I árammal egyenlő:

˛
γ

dr B(r) = 2πrBϕ = µ0I ⇒ B(r) =
µ0I

2πr
ϕ̂ . (17)

ahol ϕ̂ =(cosϕ, sinϕ, 0), illetve a rendszer szimmetriája miatt feltehettük, hogy ekkor B(r) ‖ ϕ̂.

2. A vektorpotenciálhoz alkalmazzuk az Ampere-törvény analógját a tekercsen belül egy r < R sugarú körre:

˛
dr A(r) = 2πrAϕ = πr2B ⇒ Aϕ =

rB

2
⇒ A(r) =

µ0nIr

2
ϕ̂, ha r < R, (18)

illetve ki kell számı́tanunk ehhez még a tekercsen ḱıvüli ϕ̂ irányú térből eredő vektorpotenciált is, nevezzük ez
utóbbit A2(r)-nek, ami azonban a terkecsen belül független r-től és csak egy konstans eltolást okoz a vektorpo-
tenciálban, amit rögźıt a folytonossági határfeltétel. Ez onnan látható, hogy ismét véve a korábban a mángeses
indukció vektornál használt görbét annak a tekerccsel párhuzamos r-nél lévő rész ad járulékot, azonban a tekerc-
sen belül a körül ölelt mágneses fluxus nem ad járulékot, ı́gy nem függ attól, hogy milyen r < R-nél helyezkedik
el a görbe párhuzamos része.

A tekercsen ḱıvül, r > R esetén figyelembe kell vennünk mind a tekecs teljes πR2B fluxusát, ami ad egy µ0nIR
2

2r ẑ
járulékot, a z irányú tagban, mind a mostmár r függő járulékot, ami a Bϕ-ből adódik

˛
∂F

dr A(r) = LAz =

ˆ
F

d2f ′B(r′) = L

ˆ ∞
r

dr′Bϕ = L
µ0I

2π
ln
( r
R

)
⇒ Az(r) = −µ0I

2π
ln
( r
R

)
. (19)

ahol a logaritmusban lévő konstanst úgy válaszottuk meg, hogy a vektorpotenciál z komponense folytonosan
tűnjön el az r = R-ben:

A(r) = −µ0I

2π
ln
( r
R

)
ẑ +

µ0nIR
2

2r
ϕ̂ . (20)

3. A rotáció számoláshoz használjuk a rotáció henger koordináta rendszerbeli alakjával:

rot A(r) =

(
1

ρ
∂ϕAz − ∂zAϕ

)
ρ̂+(∂zAρ − ∂ρAz) ϕ̂+

1

ρ
(∂ρ(ρAϕ)− ∂ϕAρ) ẑ . (21)

A tekercs belsejében csak Aϕ komponensünk van, ami csak r-től függ, azaz a rotációból csak az 1
r∂r(rAϕ) = µ0nI

tag fog megmaradni, ami z irányú és ı́gy helyesen visszkaptuk a mágneses teret belül! Most a külső tartományban
az 1

r∂r(rAϕ) = 0 helyesen zérust ad, mı́g a −∂rAz = µ0I
2πr , ami a rotáció képlete alapján ϕ̂ irányú, ami egyezik

a korábban kapott mágneses térrel.

4. Nem kör keresztmetszetű, de végtelen hosszú szolenoid esetén az Ampere törvényt ugyanarra a γ görbére feĺırva,
mint a köralakúnál ugyanazok a közeĺıtések működnek. Ugyańıgy a szolenoidon ḱıvül az Ampere-törvényben
csak az r > R, ahol most R a szolenoid maximális szélessége, kör által körbezárt áramot kell tekinteni.
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5. Toroid tekercs esetén, aminek a belső sugara a, ha r � a visszakapjuk a sima I áramú körvezető esetét, ahol
egy Rdϕ ϕ̂ irányű szakasz árama a kör középpontjában

dBz =
µ0I

4π

1

R
(22)

infinitezimális z irányú járulékot ad, amit he felösszegzünk a szög szernt a teljes eredmény:

B =
µ0I

2R
ẑ . (23)

Szintén az a � R határesetben a toroid belsejében egyszerűen egy a < r < a + R sugarú körre ı́rjuk fel az
Ampere-törvényt, ami a következőt adja:

˛
dr B(r) = 2πrB = 2πanµ0I ⇒ B(r) =

µ0Ina

r
ϕ̂ . (24)

Az R� a határeset egyben ekkor azt is indikálja, hogy a toroidon ḱıvül, r > a+R nincs mágneses terünk, mivel
a toroidban egymással ellentétesen folyó áramok az a� R feltétel miatt ”nagyon közel vannak egymáshoz”, ı́gy
minden a nagyságrendű pontban a járulékuk jó közeĺıtéssel kiejtik egymást!

IV. EGYENES ÁRAMVONAL

Adott a z-tengely mentén egy végtelen hosszú egyenes I áramvonal.

1. Írja fel a vektorpotenciál integrálkifejezését és számı́tsa ki az eredményt! (Seǵıtség: érdemes észrevenni a
vonaltöltéssel való analógiát!)

2. Határozza meg a vektorpotenciál ismeretében a mágneses indukciót!

Megoldás:
A vektorpotenciál kifejezhető az elektromos potenciállal analóg módon Coulomb mértékben, ∇A(r) = 0, a következő
módon:

rot rot A(r) = −∆A(r) + grad divA(r) = −∆A(r) = µ0j⇒ A(r) =
µ0

4π

ˆ
d3r′

j(r′)

|r− r′|
(25)

Esetünkben d3r′ j(r′) = I dr′ = Idz ẑ, ahonnan az integrál a vonaltól r távolságra a következő alakot ölti:

Az(r) =
µ0I

4π

ˆ ∞
−∞

dz
1√

r2 + z2
=
µ0I

4π
ash(z)

∣∣∣∞
−∞

. (26)

Látható módon ez az integrál nem függ r-től, illetve a két határértékben az eredmény végtelen, ami egy teljesen téves
eredmény, mivel tudjuk, hogy ennek a vektorpotenciálnak a rotációja egy nem zérus és véges mágneses teret kell, hogy
adjon! A hiba onnan ered, hogy a vonal végtelensége miatt bejöhettek végtelen nagy konstansok a kifejezésbe, amik
”elfedték” a valós r függést!
Vegyünk egy 2L hosszúságú vonalvezetőt, ahol most az integrál a következő alakot ölti, amikor r távolságra és z
magasságban akarjuk megadni a vektorpotenciál értékét (az általánosság megcsorb́ıtása nélkül elegendő csak a z = 0-
ban vizsgálni a problémát):

Az(r) =
µ0I

4π

ˆ L

−L
dz′

1√
r2 +(z − z′)2

=
µ0I

4π

ˆ (L−z)/r

−(L−z)/r
dz′

1√
1 +(z′)

2
=
µ0I

4π
(ash((L− z) /r)−(ash(−(L− z) /r)))

=
µ0I

2π
ln

(
(L− z) /r +

√
(L− z)2 /r2 + 1

)
= −µ0I

2π

(
ln((L− z) /r) + ln

(
1 +

√
1 + r2/(L− z)2

))
≈ −µ0I

2π
ln(L/r) ,

(27)

ahol az utolsó lépésben az L − z ≈ L közeĺıtéssel éltünk, illetve ahol az utolsó tag valóban, bár tartalmaz r függést,
eltűnik, ahogyan L → ∞, továbbá az első tag tartalmaz egy végtelen konstanst, amit azonban elhagyhatunk, hiszen
úgy is kinullázódna a rotáció képzés után. Ekkor láthatóan teljesülni fog a vektorpotenciál és a mágneses tér közötti
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öszefüggés, hiszen esetünkben, amikor csak az Az(r) komponens nem zérus, rot A = −∂rAzϕ̂ = −µ0I
2π ∂r ln(r/L)ϕ =

µ0I
2πrϕ⇒ B(r) = µ0I

2πr ϕ̂.

Teljesen analóg eset tárul elénk a vonal töltés esetén, ha exlicit integrálással akarjuk meghatározni, csupán a µ0I
4π ↔

λ
4πε0

megfeleltetéssel kell élnünk, ahol λ a homogén vonaltöltés sűrűség. Azonban a végtelen konstansok elhagyása a
elektromos potenciál esetén is megengedett lépés, tehát minden ugyanúgy műdődik mint fentebb a vektorpotenciál
esetén.

V. KÖRALAKÚ ÁRAMHUROK TERE A TENGELYE MENTÉN

Adott az xy-śıkban egy R sugarú, köralakú áramhurok, amelyben I áram folyik. A kör középpontja az origóban
van. Határozza meg a vektorpotenciált és a mágneses indukciót a z tengely mentén!

Megoldás:
Használjuk ismét a vektorpotenciálra a korábban levezetett integrál kifejezést, ahol most d3r′ j(r′) = IRdϕ ϕ̂, illetve

a z tengely mentén |r− r′| =
√
z2 +R2:

A(z) =
µ0IR

4π

ˆ 2π

0

dϕ
1√

R2 + z2
ϕ̂ = 0 (28)

mivel
´ 2π
0

dϕ ϕ̂ = 0. Ebbő lazonban még nem tudjuk származtatni a mágneses indukcióvektort, mivel, hogy
mindhárom változó szerint tudjuk képezni a rotációban a vektorpotenciál parciális deriváltjati, ahhoz ismernünk
kellene mind az r, mind a ϕ függését (vagy legalább is a dr értéknél, ha a derivátlakat r = 0-nál akarjuk kiszámolni).

A korrekt eredményhez ki kell számolnunk explicit integrálással a mágneses teret, ahol ismét |r − r′| =
√
R2 + z2,

illetve r− r′ = z ẑ−R r̂, ahonnan a Biot-savart törvény a következőt adja a z tengely mentén:

B(z) =
µ0I

4π
R

ˆ 2π

0

dϕ
ϕ̂×(z ẑ−R r̂)

(R2 + z2)
3/2

=

ˆ 2π

0

dϕ
µ0IRz

4π(z2 +R2)
3/2

r̂ +
µ0IR

2

4π(z2 +R2)
3/2

ẑ =
µ0IR

2

2(z2 +R2)
3/2

ẑ (29)

Láthatóan kaptunk az integrál kifejezésen belül egy látszólag r̂ = (cosϕ, sinϕ, 0) irányú tagot is, ami azonban´ 2π
0

dϕ(cosϕ, sinϕ, 0) = 0 módon nullára integrálódik, illetve kaptunk még egy extra járulékot, amit a vektorpo-
tenciálból csak akkor kaphattunk volna meg, ha figyelembe vesszük annak tetszőleges r függését is.

VI. VÉGTELEN SÍKLAP EGYENLETES FELÜLETI ÁRAMSŰRŰSÉGGEL

Adott egy végtelen kiterjedésű, vezető śıklap az xy-śıkban. A vezető lapon x irányban állandó nagyságú K felületi
áramsűrűség folyik. Határozza meg a B(r) mágneses indukciót mindenhol a térben!

Megoldás:
Legfontosabb megfigyelés a rendszer x, y-bel kétdimenziós eltolási invarianciája alapján, hogy a tér nem függhet x, y-
tól! Illetve, mivel az áram végtelen nagy kiterjedésű a mágneses tér a z változótól sem függhet, mivel mindegy milyen
messze vagyunk a śıktól, mindig ugyanazok lesznek az áramok járulékai adott pontban. Továbbá azon felül, hogy
a Biot-Savart törvény alapján a mágneses térnek nem lehet x irányú komponense, az is világos, hogy z irányú sem
lehet, mivel bármely pontban a ponttól jobbra és balra lévő térrész áramai éppen ellentétes z irányú komponenseket
adnak! Ezen felül az alsó és felső féltérben is ugyankkora lesz a tér nagysága, de ellentétes irányban fognak mutatni.
Tehát B = −Bsgn(z) ŷ, illetve a z függetlenség miatt elég egy tetszőleges l hosszú h magas téglalap alakú görbén
alkalmazni az Ampere-törvényt az z > 0 térrészben

˛
dr B = 2lB = µ0lK ⇒ B = −µ0K

2
ŷ . (30)

Mı́g a z < 0 térrészben az ellentétes körüljárás miatt a fenti eredmény(−1)-szeresét kapjuk, amivel kifejezhető a teljes
megoldás:

B = −µ0K

2
sgn(z) ŷ . (31)
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Explicit integrálással is eljuthatunk ehhez az eredményhez, vegyünk y > 0 esetén egy dy vastagású szakaszt, amin az
átfolyó áram ekkor dI = Kdy. Ekkor az általa keltett mágneses tér nagysága az y = 0, z magasságban a vonalvezetőre
levezetett formula alapján, ami a rendszer 2 dimenziós transzlációs invariánciája miatt egy tetszőleges pont a térben:

dB = −µ0

2π

Kdy√
y2 + z2

. (32)

Ekkor azonban figyelembe véve a hasonló nagyságú y < 0 infinitezimális szakaszdarabból eredő járulékot a térnek csak
y irányú komponense marad, amihez vennünk kell az y, z = 0 és a y = 0, z pontot összekötő szakasz és az y tengely

által bezárt szög szinuszát, sinϕ = |z|√
y2+z2

, ahonnan az infinitezimális y irányú komponens:

dBy = −µ0

π

K|z|
y2 + z2

dy , (33)

ahol egy 2-es faktorral vettük figyelembe, hogy ugyanolyan járulék adódik mind az y > 0, mind az y < 0 tar-
tományokból. Innen a következő integrállal kapjuk meg a mágneses tér y komponensét:

By(z) = −µ0

π

ˆ ∞
0

dy
K|z|
y2 + z2

= −µ0

π

sgn(z)

z
z arctg

(y
z

) ∣∣∣∞
0

= −µ0K

2
sgn(z) . (34)


