
Példák: Laplace egyenlet, változószeparáció

I. POTENCIÁL FÖLDELT FÉMLAPOK KÖZÖTT

1. Két végtelen hosszú földelt fémlap egymással párhuzamosan, az egyik y = 0-nál az xz-śıkon, a másik y = a-nál
helyezkedik el. Mindkettő x > 0 részre terjed ki, x < 0 részen vákuum van. A végüket x = 0-nál lezárja
egy végtelen hosszú szalag, amelynek a vastagsága a, a z irányban végtelen, és az y irányban az 0 < y < a
tartományon terjed ki. A szalag a két fémlaptól elszigetelt, a potenciálja V0(y). Számolja ki a potenciált a
három felület (két fémlap és szalag) által közrezárt térfogaton. (Javaslat: először rajzolja le a rendszert!)
Megoldás:
Laplace/Poisson (inhomogén Laplace) egyenlet megoldása adott peremfelétel mellett egyértelmű:

∆Φ(r) = − ρ

ε0
(1)

Ennek ismerjük a partikuláris megoldását, Φp(r) = − 1
4πε0

´
d3r′

ρ(r′)
|r−r′| , mı́g a homogén megoldást az adott

határfeltétel specifikálása által tudjuk megadni:

∆Φh(r) = 0 + határfeltétel: Φh(r)
∣∣∣
r∈S

(2)

Descartes koordináta-rendszerben, 2 dimenzióban, a következő módon tudunk eljárni, alkalmazva a változószeparáció
módszerét, azaz Φ(x, y) = X(x)Y (y):

∆Φ(r) =

(
∂2

∂x2
+

∂2

∂y2

)
Φ(r) = 0

Φ(x, y) = X(x)Y (y) → (∆Φ(x, y))/Φ(r) =
∂2
xX(x)

X(x)
+

∂2
yY (y)

Y (y)
= 0

(3)

Az utolsó egyenlet baloldalán az első tag csak x-től függ, a második tag csak y-tól, ı́gy mindkettő csak egy-
egy konstans lehet, pontosabban egymás −1-szeresei. ∂2

xX(x) = γX(x), ∂2
yY (y) = −γY (y). A γ együtthatót

pedig a határfeltétel alapján tudjuk meghatározni. Az egyik feltételünk, hogy az x → ∞ limeszben el kell
tűnnie a potenciálnak, Φ(x → ∞) = 0, ami csak pozit́ıv γ-t eredményezhet, illetve exponenciálisan lecsengő
X(x) ∼ e−γx-et, ekkor ı́rjuk inkább a kényelmesebb γ = α2, aminek következtében ∂2

yY (y) = −α2Y (y). Most
határozzuk meg α értékét a Φ(x, y = 0, a) = 0 → Y (y = 0, a) = 0 alapján:

∂2Y

∂y2
= −α2Y → Y (y) = A sin(αy) +B cos(αy) + Y (y = 0, a) = 0 (4)

→ Y (y = 0, a) = 0 → α =
nπ

a
→ Φ(x, y) =

∞∑
n=0

Ane
−nπ

a x sin
(nπ

a
y
)

(5)

ahol, mivel tetszőleges n-re teljesülnie kell, azoknak általánosan vennünk kell egy lineár kombinációját, ahol az
együtthatókat a Φ(0, y) = V0(y) fogja meghatározni, amihez felhasználjuk az ortogonalitási szabályt, azaz hogy´ a
0
dy sin

(
nπ
a y
)
sin
(
mπ
a y
)
= δnma/2

Φ(0, y) =

∞∑
n=0

An sin
(nπ

a
y
)
= V0(y)

/ˆ a

0

dy sin
(mπ

a
y
)
. . .

2

a

ˆ a

0

dy sin
(mπ

a
y
)
V0(y) = Am

(6)

Vagyis megadtuk egy integrálként az Am együtthatókat.

2. Egy végtelen hosszú téglalap alapú fémcső (a téglalap oldalai a és b) az x = 0-nál kezdődik, és az x tengely
pozit́ıv irányaban végtelen. Az x = 0 végén egy kis téglalap alakú szigetelő a potenciált V0(y, z) értéken tartja.
A téglalap egyik a hosszúságú oldala a z-tengelyen, a másik a z-tengellyel párhuzamosan, y = b-nél található,
az egyik b hosszúságú oldala pedig az y tengelyen, a másik pedig az y tengellyel párhuzamosan a z = a-nál
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található. Számolja ki a potenciált a három felület által közrezárt térfogaton! (Javaslat: először rajzolja le a
rendszert!)
Megoldás:
Most hasonlóan járunk el, csak 3 dimenzióban:

∆Φ(x, y, z) = 0 → Φ(x, y, z) = X(x)Y (y)Z(z) → ∆Φ(x, y, z) = Φ(x, y, z) = 0 → ∂2
xX(x)

X(x)
+
∂2
yY (y)

Y (y)
+
∂2
zZ(z)

Z(z)
= 0

(7)
Most 2 független konstanst kell bevezetnünk oly módon, hogy ∂2

xX/X = α2+β2, ∂2
yY/Y = −α2, ∂2

zZ/Z = −β2.
Ekkor a következő megoldások adódnak a három egyváltozós függvényre:

X(x) ∼ e−
√

β2+α2x

Y (y) ∼ sin(βy)

Z(z) ∼ sin(αz)

Most meghatározzuk α és β lehetséges értékeit a határfeltételek alapján:

Φ(x, y = 0, b, z) = 0 → αn =
nπ

b

Φ(x, y, z = 0, a) = 0 → βn =
nπ

a

Φ(x, y, z) =

∞∑
n,m=0

An,me
−π

√
n2

a2 +m2

b2
x
sin
(nπ

a
z
)
sin
(mπ

b
y
)

Most ismét, mivel ismerjük a potenciált a Φ(x = 0, y, z) = V0(y, z) értékeknél, illetve most egy duplaintegrál

formájában alkalmazva az ortogonalitási azonosságot,
´ a
0

´ b
0
dz dy sin

(
nπ
a z
)
sin
(
mπ
b y
)
sin
(

n′π
a z
)
sin
(

m′π
b y
)
δnn′δmm′ab/4:

Φ(0, y, z) =

∞∑
n,m=0

An,m sin
(nπ

a
z
)
sin
(mπ

b
y
)
= V0(y, z)

/ˆ a

0

ˆ b

0

dx dy sin
(nπ

a
y
)
sin
(mπ

b
y
)
. . .

An,m =
4

ab

ˆ a

0

ˆ b

0

dxdy sin
(nπ

a
x
)
sin
(mπ

b
y
)
V0(y, z)

(8)

3. Két végtelen hosszú földelt fémlap egymással és az xz-śıkkal párhuzamosan, az egyik y = 0-nál, a másik y = a-
nál, helyezkedik el. Mindkét fémlap szegélye x = 0-nál van, és csak az x > 0 tartományban terjednek ki.
A x = 0-nál található szegélyüket lezárja egy végtelen hosszú szalag, amely a két fémlapoktól elszigetelt, és
amelynek a potenciálja V0, ha 0 < y < a/2, és −V0 ha a/2 < y < a. Számolja ki a potenciált a három felület
által közrezárt térfogaton. (Javaslat: először rajzolja le a rendszert!)
Megoldás:
Ismét két dimenzióban dolgozunk, hasonló elrendezés esetén, mint az első példában, vagyis rögtön feĺırhatjuk a
megoldást a következő alakban:

Φ(x, y) =

∞∑
n=0

Ane
−nπ

a x sin
(nπ

a
y
)

(9)

An =
2

a

ˆ a

0

dy sin
(nπ

a
y
)
V0(y) (10)

Most azonban ismerjük a határfelételben mgjelenő potenciál potnosa alakját, amit béırva az An együtthatókat
definiáló integrálba, a következő adódik:

An =
2V0

a

(ˆ a/2

0

dy sin
(nπ

a
y
)
−
ˆ a

a/2

dy sin
(nπ

a
y
))

=
2V0

nπ
(1− 2 cos(nπ/2) +(−1)

n
) (11)

Könynen meg lehet mutatni, hogy ez a kifejezés csak akkor nem ad nullát, ha n = 4k + 2 alakú, vagyis

An =
4V0

(2k + 1)π
δn,4k+2 (12)
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4. Egy téglalap-alapú végtelen cső négy oldalából három földelt fémlap. Ezek az y = 0, y = a, és x = 0-nál
helyezkednek el. A negyedik, x = b-nél elhelyezkedő V (y) potenciálon van. A cső a z irányban, mind a pozit́ıv
és negat́ıv irányokban végtelen. Vezesse le a potenciált!
Megoldás:
Ismét a kétdimenziós megoldást kell alkalmaznunk és ismét a két földelési feltétel miatt, Φ(x, y = 0, a) = 0 →
Y (y = 0, a) = 0, az ∂2

yY = −α2Y differenciálegyenlet megoldásaként ∼ sin
(
nπy
a

)
alakú függvényt fogunk

kapni, illetve most a ∂2
xX = α2X egyenlet megoldását a X(x) ∼ sinh

(
nπx
a

)
alakban kell keresnünk, hogy ki

tudjuk eléǵıteni a Φ(0, y) = 0 feltételt. Ekkor a teljes megoldás az általános együtthatókkal, majd azokat az
ortogonalitási feltételből meghatározva:

Φ(x, y) =

∞∑
n=0

An sinh
(nπx

a

)
sin
(nπ

a
y
)

(13)

Φ(x = b, y) =

∞∑
n=0

An sinh

(
nπb

a

)
sin
(nπy

a

)
= V (y) (14)

An =
2

a sinh
(
nπb
a

) ˆ a

0

dx sin
(nπy

a

)
V (y) (15)

II. LAPLACE-EGYENLET GÖMBKOORDINÁTÁKBAN

Gömbkoordinátákban a Laplace egyenlet alakja

1

r2
∂

∂r

(
r2

∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂ϕ2
= 0. (16)

Azimutális szimmetria esetén nincs ϕ-függés. Ebben az esetben a megoldás feĺırható

Φ(r, θ) = R(r)Θ(θ) (17)

alakban.

• Mutassa meg, hogy az

R(r) = Arl +
B

rl+1
(18)

a radiális rész általános megoldása.

Megoldás:
Ha nincs azimutális szögfüggése az utolsó tag kiesik és ekkor ismét osszunk le mindent a Φ(r, θ) = R(r)Θ(θ)-val:

1

R

∂

∂r

(
r2

∂R

∂r

)
+

1

Θ sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
= 0 (19)

Vagyis mivel ismét mindkét tag csak különböző változóktól függenek, ∂
∂r

(
r2 ∂R

∂r

)
= αR, látható, hogy mind az rl,

mind az r−(l+1) éppen önmagával lesz arányos a differenciáloperátor hatása után:

∂

∂r

(
r2

∂(Arl)

∂r

)
= l(l + 1)Arl (20)

∂

∂r

(
r2

∂(Br−(l+1))

∂r

)
= l(l + 1)Ar−(l+1) → α = l(l + 1) (21)

A θ-függő rész általános megoldásai a Legendre polinómok, Θ(θ) = Pl(cos θ). Az első néhány Legendre polinom:

P0(x) = 1 (22)

P1(x) = x (23)

P2(x) = (3x2 − 1)/2 (24)

P3(x) = (5x3 − 3x)/2. (25)
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A Legendre polinomokra igaz, hogy

ˆ 1

−1

Pl(x)Pl′(x)dx =
2

2l + 1
δll′ . (26)

1. Adott egy R sugarú gömbhéj, amelynek a felületén a potenciál Φ0(θ). Határozza meg a potenciált a gömbön
belül!
Megoldás:
A gömbön belüli potenciálhoz a radiális részből csak az Arl tagot tekinthetjük, mivel nem lehet a potenciál
szinguláris az origóban, Φ(r → 0) < ∞. Ekkor az általános megoldás:

Φ(r, θ) =

∞∑
l=0

Alr
lPl(cos θ) (27)

Φ(R, θ) =
∑
l=0

AlR
lPl(cos θ) = Φ0(θ) (28)

Most használjuk a Legendre polinomok ortogonalitási relációját, azaz

Al =
2l + 1

2Rl

ˆ π

0

dθ sin θΦ0(θ)Pl(cos θ) =
2l + 1

2Rl

ˆ 1

−1

dxPl(x) Φ0(x) (29)

2. Adott egy semleges R sugarú fémgömb, amelyet E = E0ẑ (homogén) külső elektromos térbe helyezünk.
Határozza meg a potenciált a gömbön ḱıvül! (Seǵıtség: csak a P0(x) és a P1(x) Legendre polinomokra van
szükség.)
Megoldás:
Ekkor a hatérfeltételt a felületen a külső tér által keltett potenciál értékével vesszük figyelembe, Φ(R) =
E0R cos θ, illetve mivel nincs földelve a gömb, általánosa egy konstans V0 potenciálja is lehet. A gömbön ḱıvüli
potenciál meghatározásához csak a ∼ Br−(l+1)-es tagot kell tekintenünk, mivel további határfeltételünk, hogy a
potenciál a végtelen távolban sem divergálhat, Φ(r → ∞) < ∞. Vagyis az általános kifejtés a következőképpen
néz ki:

Φ(r, θ) =

∞∑
l=0

Blr
−(l+1)Pl(cos θ) , Φ(R, θ) = E0R cos θ (30)

Látható, hogy a Pl(cos θ) Legendre polinomok függetlensége miatt csak a P0(cos θ) és a P1(cos θ) jöhet szóba,
ami a határfeltétel alapján ki kell, hogy eléǵıtse:

B0R
−1 +B1R

−2P1(cos θ) = E0R cos θ + V0 → B1 = E0R
3, B0 = V0 → Φ(r) =

E0R
3

r2
cos θ + V0 =

E0R
3z

r3
+ V0

(31)
ami láthatóan egy dipólus potenciálja, ahogyan megkaptuk a 4. Gyakorlat/IV. példája által is.


