
Példák: Eltolási áram, megmaradási tételek

I. ELMÉLETI ÖSSZEFOGLALÓ

1. Eltolási-áram:
A negyedik Maxwell egyenlet a harmadik mintájára kiegésźıthető egy az elektromos tér megváltozásából adódó
járulékkal:

∇×B = µ0j + µ0ε0
∂E

∂t
(1)

Látható, hogy ha egy elektromos tér ∼ E(ωt) módon lassan változik az időben, akkor a gerjesztett mágneses tér
a Faraday-törvány alapján ∼ ω-val lesz arányos, aminek következtében az ∂B

∂t ∼ ω2/c2. Vagyis látható, hogy

ha nem elég nagy a frekvencia, akkor jó közeĺıtéssel elhagyható a −∂B∂t tag, illetve ford́ıtva is igaz, ha kezdetben
a mágneses tért kezdjük el időben változtatni. Ezt nevezzük kvázistacionárius határesetnek.

2. Elektromágneses tér impulzus mérlegegyenlete:
Az impulzus megváltozásának sűrűsége ρE + j × B, melyet a elektromos és a mágneses terek seǵıtségével
egy mérlegegyenlet alakjába ı́rhatunk, ismét rendre ”forrás’+’sűrűség időderiváltja”+”beáramló impulzus
áramsűrűség”:

∂tgi + ∂jTij + ρEj +(v ×B)i = 0 (2)

ahol mindent az i. impulzus komponensre ı́rtunk fel, ahol Tij = 1
2 (DE + BH) δij − EiDj − HiBj , illetve

g = D×B.

II. SÍKKONDENZÁTOR TÖLTÉS KÖZBEN (A TÍPUSÚ)

A 1. ábrában adott két fémlap amely egy áramkörben egy śıkkondenzátort képez, vékony huzalokkal bekötve,
amelyek áramot vezetnek a śıklapokba. Az I áram állandó, a kondenzátor sugara a, és a fémlapok közötti rés
szélessége w << a. Az áram oly módon folyik a śıklapokba, hogy a töltéseloszlás egy adott pillanatban egyenletesnek
tekinthető. t = 0 időben a fémlapokon jelenlévő töltés nulla.

1. Mekkora az elektromos tér a śıklapok között egy adott t időben?

2. Mekkora a teljes eltolási áram egy s sugarú körön belül, amelynek középpontja az elrendezés forgástengelye, és
amelyik a két śık között félúton van? Mekkora a mágneses tér ugyanezen kör kerületén?

3. Ismételje meg az előző feladatot, de most a számolást a 2. ábrán mutatott henger felületen végezze! Megjegyzés:
az eltolási áram ezen a felületen keresztül zérus, és a hengeren belüli áramnak két komponense van.

Megoldás:

1. A lemezeken megjelenő töltés egyszerűen arányos a befolyó árammal, Q(t) = It, ahonnan a śıkkondenzátoroknál

alkalamzott egyszerű közeĺıtéssel az elektromos tér E(t) = Q(t)
ε0A

= It
ε0A

2. Elotlási áram defińıció szerint a 4. Maxwell egyenelt szerint:

rot B = µ0j + µ0
∂D

∂t
(3)

Esetünben az eltolási áram nem függ a helytől ∂D
∂t = I

A ẑ. Ekkor az adott s sugarú kör kerültetén ismét az
Ampere-törvény seǵıtségével tudjuk kiszámı́tani a mágneses teret:

˛
dr B = 2πsB = µ0

πs2I

A
⇒ B =

µ0Is

2A
ϕ̂ (4)
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FIG. 1. Kondenzátor elrendezés, töltés közben.

3. Ekkor a kondenzátoron megjelenő időben változó felületi töltéssűrűséget a következőképpen ı́rjuk fel:

σ(t) =
I − I ′(s)
πs2

t (5)

ahol I ′(s) a lemezeken merőlegesen áthaldó áram s sugárnál áram, mı́g a I − I ′(s) széfolyik a kondenzátor
lemezeken, illetve ekkor természetesen I ′(a) = 0. Ekkor mivel a felületi töltéssűrűség állandó marad a
következővel paraméterezhetjük a lemezeken keresztülfolyó áramot βs2 = I − I ′(s), hozzávéve azt, hogy
I ′(a) = 0⇒ β = I/a2, amiből a felületi töltéssűrűség:

σ(t) =
β

π
t =

I

πa2
t (6)

III. HUZAL, KÉT IRÁNYBAN FOLYÓ ÁRAMMAL (B TÍPUSÚ)

Egy végtelen hosszú huzalon I(t) = I0 cos(ωt) áram folyik. A huzalt egy a sugarú henger veszi körül, amelynek a
felületén −I(t) áram folyik. Feltételezzük, hogy a tér nullához tart az r →∞ limeszben.

1. Kvázistacionárius közeĺıtésben határozza meg az indukált elektromos térerősséget!

2. Határozza meg az eltolási áram sűrűségét!

3. Integrálja a fenti eredményt, hogy megkapja a teljes eltolási áramot!

Id =

ˆ
Jd · df . (7)
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FIG. 2. Kondenzátor elrendezés, töltés közben.

4. Hasonĺıtsa össze az Id-t és az I-t. Mi az arányuk? Határozza meg, milyen kell legyen a frekvencia, hogy az
eltolási áram elérje a vezetőben folyó I áram 1%-át, amennyiben a = 1 mm!

A fentiek alapján vajon miért nem fedezte fel Faraday az eltolási áramot? (Megjegyzés: maga Maxwell is az
eltolási áram fogalmát puszta elméleti alapon vezette le.)

Megoldás:

1. Felhasználva az Ampere törvényt ekkor az áram által keltett mágneses tér csak az a sugarú hengeren belül van
jelen, és értéke a ”szokásos” módon:

B(t) =
µ0I(t)

2πr
=
µ0I0
2πr

cos(ωt) , ha r < a (8)

Ekkor a változó mágneses tér által generált elektromos tér a rot E = −∂B(t)∂t = µ0I0ω
2πr sin(ωt) alapján számı́tható

ki, aminek csak z irányú, r függő komponense van, ahonnan a rotáció rot E = −∂rEz(r) ϕ̂ = µ0I0ω
2πr sin(ωt) ϕ̂⇒

Ez(r) = −µ0I0ω
2π ln

(
r
a

)
sin(ωt), ahol a logaritmus hasában lévő konstanst úgy választottuk meg, hogy az elektro-

mos tér a hengeren ḱıvül nulla legyen, hiszen ott mángeses tér sincs jelen! A kvázistacionárius közeĺıtés feltétel
ekkor ott jelenik meg, hogy kellően kicsi frekvencia esetén a változó elektromos tér által generált mágneses tér
már elhanyagolhatóan pici!

2. Az elotlási áram defińıció szerint

Jd =
∂D

∂t
= −µ0ε0I0ω

2

2π
ln
( r
a

)
cos(ωt) ẑ (9)
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3. A teljes eltolási áramhoz a henger keresztmetszetére kell vennünk az eltolási áramsűrűség felületi integrálját,
azaz

Id =

ˆ
d2f Jd = −µ0ε0I0ω

2 cos(ωt)

ˆ a

0

dr r ln
( r
a

)
=
µ0ε0I0a

2ω2

4
cos(ωt) (10)

4. Innen a két áram nagyságának aránya akkor lesz egy százalék, a = 10−3 mm esetén, ha a következő frekvenciát
választjuk meg

Id
I

=
µ0ε0ω

2a2

4
=
ω2a2

4c2
≈ 10−22/36ω2 ≈ 3× 10−24ω2 ⇒ ω

√
36× 1018 = 6× 109s−1 (11)

IV. KOAXIÁLIS KÁBEL TELJESÍTMÉNYE (A TÍPUSÚ)

Egy hosszú koaxiális kábelben I áram folyik az a sugarú henger felületén egyik irányban, a b sugarú henger
felületén az ellentétes irányban (3. ábra). A két vezető közötti potenciálkülönbség V . Számolja ki a kábelen átfolyó
teljeśıtményt!

FIG. 3. Koaxiális kábel.

Megoldás:

B = 0, ha r < a (12)

B =
µ0I

2πr
ϕ̂ (13)

B = 0, ha r > b (14)

Mı́g az elektromos tér, hasonló nódon 3 részre osztható a kábelen belül, ahol ismét csak a belső részben lesz nem zérus
az értéke. V potenciálkülönbség esetén a térerősség a hengerszimmetrikus elrendezés miatt biztosan E ∼ r̂

r alakú lesz,

a konstans faktort pedig az határozza meg, hogy tudjuk az integrálja a- tól b-ig V -t ad, azaz
´ b
a

dr V0

r = V ⇔ E =
V

r ln(b/a) , ahonnan a teljes térerősség:

E = 0, ha r < a (15)

E =
V

r ln(b/a)
r̂ (16)

E = 0, ha r > b (17)

Innen megadható defińıció szerint a Poyting vektor, azaz az elektromágneses tér általszálĺıtott energia áramssűrűség:

S = E×H =
V

r ln(b/a)

I

2πr
r̂× ϕ̂ =

IV

2π ln(b/a) r2
ẑ (18)
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Ekkor az átfolyó teljeśıtmény egyszerűen csak a Poyting vektor felületi integrálja arra a felületre, amelyiken átfolyik:

˛
d2f S = 2π

ˆ b

a

dr r
IV

2πr2 ln(b/a)
= IV (19)

V. EGYENLETES TÖLTÉSŰ GÖMB (A TÍPUSÚ)

Adott egy egyenletesen töltött (Q), R sugarú gömbhéj. Határozza meg a a gömbhéj északi felére ható eredő erőt a
Maxwell-féle feszültségtenzor alkalmazásával!
Megoldás:
Elektromágneses tér impulzus mérlegegyenlete:

∂tgi + ∂jTij +(ρE + J×B)i = 0 (20)

ahol g = D × B az impulzus sűrűség, ∂jTij pedig az impulzus áramsűrűség, mı́g az utolsó tag az impulzus forrás,

illetve ahol Tij = 1
2 (DE + BH) δij − EiDj − HiBj . Esetünkben E = Q

4πε0R2 r̂, D = ε0E, B = H = 0. Így g = 0,
vagyis ki tudjuk számolni az erőt a feszültség tenzor seǵıtségével:

Tij =
Q2

32π2ε0R4
(δij − 2r̂ir̂j) (21)

Ekkor az erő sűrűséget a felső félgömbre kell kiintegrálnunk, amihez alkalmazzuk a Gauss-tételt a feszültség tenzor z.
komponensére:

Fz = −
ˆ

d3r ∂jTzj = −
˛

d2|f | r̂jTzj = − Q2

16πε0R2

ˆ π/2

0

dθ sin θ (δzjrj − 2r̂z r̂
2
j ) =

Q

16πε0R4

ˆ π/2

0

dθ sin θ r̂z

=
Q2

16πε0R2

ˆ π/2

0

dθ sin θ cos θ =
Q2

16πε0R2

(22)

mivel r̂z = cos θ defińıció alapján. Illetve ahol a Gauss tétel a következőképpen került alkalmazásra, nevezzük el a
Tzj vektorkomponenst Tz vektormezőnek és feĺırva az infinitezimális (d2f)j = d2|f |r̂j

ˆ
d3r∇Tz =

˛
d2|f |r̂j Tz =

˛
d2|f |r̂j Tzj (23)


