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Gain, bandwidth, phase shift, power source, nonlinearity and noise

The monochromatic optical plane wave traveling in z direction in the 
laser material with frequency can be characterized:
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Amplifier nonlinearity or gain saturation
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Amplifier nonlinearity or gain saturation – frequency dependence

Depends on the broadening behavior of the medium, different for 
homogeneous and inhomogeneous media.

Homogeneously broadened medium
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Amplifier nonlinearity or gain saturation

Homogeneously broadened medium (cont.)

Gain of a homogeneous medium of length   ?
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There are analytic solutions only in two limiting cases!
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Amplifier nonlinearity or gain saturation

Homogeneously broadened medium (cont.)

1. , the photon-flux densities
are much smaller than the saturation
photon-flux density

X and Y are negligible in comparison with ln X and ln Y. There is 
linear dependence between the input and output signals for a given 
length of the medium, the gain depends on 0, this is the origin of the 
name small signal gain!
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Amplifier nonlinearity or gain saturation

Homogeneously broadened medium (cont.)

2. , the photon-flux densities
are much higher than the saturation
photon-flux density

ln X and ln Y can be neglected in comparison with X and Y. Under 
such heavily saturated conditions there is only a constant grow in the 
output that is independent from the input photon-flux density. The 
medium becomes almost transparent! 
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Amplifier nonlinearity or gain saturation

Homogeneously broadened medium (cont.)

For intermediate values of X and Y there are numerical solutions:
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Amplifier nonlinearity or gain saturation

Homogeneous saturable absorber

The gain coefficient is negative when the population is normal than inverted 
(in thermal equilibrium), that is N0 < 0, the medium provides attenuation than 
amplification. The attenuation coefficient                       also suffers from 
saturation with growing photon-flux density.
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homogeneous groupsAmplifier nonlinearity or gain saturation

Inhomogeneous saturable amplifier

Small signal gain ~ average lineshape function
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Amplifier nonlinearity or gain saturation

Inhomogeneous saturable amplifier (cont.)
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Amplifier nonlinearity or gain saturation

Inhomogeneous saturable amplifier (cont.)

Analytic solution only in special cases, e.g. when , around 0 the 
saturated gain:
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homogeneous saturates at s
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Local saturation by a large flux 
density photon beam of frequency 1

”spectral hole burning”
The width and depth of the hole 
increases with the flux density.
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Inhomogeneous saturable amplifier (cont.)
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Amplifier noise

The amplified spontaneous emission (ASE) noise is broadband, 
multidirectional, and unpolarized. The probability density (per second) of 
spontaneous emission in the range [ d ] and in unit volume dV:

if N2 is the atomic density in level 2, the average spontaneously emitted 
power per unit volume per unit frequency is: .  The number of 
emitted photons in unit length of the unit volume within bandwidth B around 

in solid angle d with a given polarization:
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Passive optical resonatorsPassive optical resonators
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Passive optical resonators
What is necessary for a laser?

Optical resonator – cavity with reflecting walls, provides feedback 
of the electromagnetic field on discrete 
frequency, determines spatial distribution of 
the modes.

Passive optical resonator – no active medium is present.

amplifying medium

input power

Laser light

optical resonator

high reflectivity mirror output mirror

active optical resonator
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Characteristics of passive optical resonators

• They are open, feedback only from a narrow solid angle  (no 
side walls and small size mirrors in the longitudinal direction),

• Dimensions >> laser, suitable length of the active medium 
depends on the gain.

Solving Maxwell-equations for the geometry of the optical cavity 
(solving wave-equation with boundary conditions: the field amplitude is 
taken to be ”0”)  discrete frequency modes of the electromagnetic 
fields can be determined. Because of the open resonator instead of 

the usual stationary solutions

modes with exponentially decaying amplitude, r is the resonator or 
photon  lifetime.
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Passive optical resonators
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One dimensional plane parallel resonator – estimation of the photon lifetime 

L is the resonator length, R1 and R2 are reflectivity 
(intensity) of the mirrors, r is the loss coefficient
in the resonator (unit length), s is the scattering
coefficient between the mirrors. For one round-trip
the intensity changes:

While s<<1

E.g., if R = R1 = R2 = 0.98 and L = 0.5 m

L
R 1 R 2

round-trip time ~ 25 tr

Passive optical resonators
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One dimensional plane parallel resonator – modes

From the standing waves condition: L
R 1 R 2
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Quality (Q) factor
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Ex.: R = R1 = R2 = 0.98; L = 0.5 m, = 5·1014Hz (0.6 µm)

Q = 2.5 ·108

Q increases with increasing resonator lifetime, high Q-values can be 
achieved in a resonator when the bandwidth of the modes is small!

Passive optical resonators
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Types of resonators

Mirrors can be rectangular or circular, plane, concave or convex, in a 
distance of few cm’s to few meters. Dimensions of the mirrors are 
typically few mm’s or cm.

The geometry determines:
- the volume of the modes in the cavity,
- the gain,
- properties of the laser beam such as diameter and 

divergence. 

Passive optical resonators
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Types of resonators

1. Plane parallel (or Fabry-Perot) resonator

2. Concentric or spherical resonator (R is radius)

L

Superposition of two plane waves traveling in 
opposite directions along the cavity axis.
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Superposition of two oppositely traveling 
spherical waves. The resonant frequencies 
are equal with the frequencies of the Fabry-
Perot resonator. 

Passive optical resonators



2323 Laser Physics 14

Types of resonators (cont.)

3. Confocal resonator (special role)

4. Plane and spherical mirror combinations

hemi-confocal (half of 3.) hemi-spherical (half of 2.)

L = R, R1 = R2 = R, F1 = F2 = F 

The modes are not plane or spherical waves 
and the resonant frequencies have no simple 
form. F
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Types of resonators (cont.)

5. General resonator

Two mirrors with optional spherical radius in a distance of L.
Task: determination of the spatial distribution, the frequency and
the loss of the modes. Two categories:

stable resonator unstable resonator

rays remain inside, after some round-trip the ray
repeated ray-paths diverges from the cavity

Passive optical resonators
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Plane parallel resonator – approximate determination of l,m,n frequencies
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Plane parallel resonator – approximate determination of l,m,n frequencies

Distance of two consecutive longitudinal modes:

If L = 0.5 m, n = 3·108 s-1 = 300 MHz. Typical order of magnitude: 100 MHz ,

Distance of two consecutive transverse modes:
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Plane parallel resonator – amplitude distribution of transverse modes 
and calculation of the loss
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Plane parallel resonator – amplitude distribution of transverse modes 
and calculation of the loss (cont.)

symmetrical mode asymmetric mode

.
L
a,

a
,

L
aa

L
aN gd

d

g

.def

1
22

2

The parameter N in figures is the Fresnel number, the ratio of the 
geometrical angle and twice the diffraction angle:

Passive optical resonators
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Plane parallel resonator – amplitude distribution of transverse modes 
and calculation of the loss (cont.)

d depends on N and the transverse mode indices l and m, and independent 
on n:

The notation  of the transverse 
modes is TEMml

transverse electromagnetic 
mode

Loss of TEM00 and TEM01 as a function of the Fresnel 
number

Passive optical resonators


