

Laser Physics 12. Interaction of light with matter

Maák Pál

Atomic Physics Department

Laser Physics 12

1

Light-matter interactions (summary)

Interactions in a volume V with a selected mode of frequency v: spontaneous emission, absorption, stimulated emission

Probability densities of the processes ~ transition cross section $\sigma(v)$ [cm²]

$$p_{sp} = \frac{c}{V}\sigma(v), \quad p_{ab} = p_{ie} = \frac{c}{V}\sigma(v), \quad P_{ab} = P_{ie} = W_i = n\frac{c}{V}\sigma(v) \quad [s^{-1}].$$

Strength of interactions, lineshape function:

 $S = \int_{0}^{\infty} \sigma(v) dv \quad [cm^{2}s^{-1}], \quad g(v) = \frac{\sigma(v)}{S}.$ Total spontaneous emission into all modes: $P_{sp} = \frac{8\pi}{\lambda^{2}}S \quad [s^{-1}]$

Spontaneous lifetime:
$$P_{sp} = \frac{1}{t_{sp}}, \quad S = \frac{\lambda^2}{8 \pi t_{sp}}, \quad \sigma(v) = S g(v) = \frac{\lambda^2}{8 \pi t_{sp}} g(v)$$

Interaction with a photon beam of frequency v travelling in a selected direction:

 Φ photon-flux density (photons / cm² ·s)

 $W_i = \Phi \sigma(v)$ effective interaction area

S can be determined from measurement, g(v)?

Line-broadening mechanism

The frequency dependence of light-matter interactions is governed by the normalized lineshape function g(v). Materials can be classified into two basically different groups:

homogeneous

All atoms, molecules behave similarly in the light-matter interaction, they have the same individual lineshape function.

inhomogeneous

Group of atoms and molecules behave differently in the lightmatter interaction, the whole system can be characterized by an average lineshape function.

The reality is always a mixture of the two properties!

Homogeneous broadening – lifetime or natural broadening

It is always present, the questions is how much dominant is?

Excited energy levels have finite lifetime. If level 2 is an excited level, its lifetime τ represents the inverse of the rate at which the population of that level decays to level 1 and to all other lower energy levels radiatively (t_{sp}) or nonradiatively, therefore $\tau \leq t_{sp}$.

The population of level 2 decays exponentially, therefore the amplitude of emitted electromagnetic field decays also exponentially

$$E = e^{-t/2r} e^{j2\pi v_0 t}, \quad E_2 - E_1 = hv_0.$$

The energy decays with τ , therefore the factor of $\frac{1}{2}!!$

The spectral dependence can be calculated by the Fourier-transform of the exponentially decaying harmonic function.

Homogeneous broadening – lifetime or natural broadening (cont) Time dependent field amplitude: $E(t) = e^{-t/2\tau} e^{j^{2\pi\nu_0 t}}$, ha t > 0E(t) = 0, ha t < 0.

the Fourier-transform of *f*(t):

$$f(t) \to F(v) = \int_{-\infty}^{\infty} f(t) e^{-j2\pi v t} dt \to |F(v)|^2 \to \text{normalizing} \to g(v)$$

$$g(v) = \frac{\Delta v / 2\pi}{(v - v_o)^2 + (\Delta v / 2)^2}, \quad \Delta v = \frac{1}{2\pi\tau}, \quad g(v_0) = \frac{2}{\pi \Delta v}.$$

 Δv is the FWHM of the Lorentz-function. We could start from the uncertainty principle of Heisenberg:

$$\Delta E \Delta t \approx \hbar$$
, $\Delta E \tau \approx \hbar \rightarrow 2\pi \Delta v \tau \approx 1$.

/

Homogeneous broadening – lifetime or natural broadening (cont)

General case: both selected energy levels are excited levels, both have lifetime broadenings:

$$\Delta E_2 = \frac{h}{2\pi\tau_2}, \quad \Delta E_1 = \frac{h}{2\pi\tau_1},$$

the broadening of the transfer is:

$$\Delta E = \Delta E_1 + \Delta E_2 = \frac{h}{2\pi} \left(\frac{1}{\tau_1} + \frac{1}{\tau_2} \right) = \frac{h}{2\pi} \frac{1}{\tau_1},$$

The reciprocal of the characteristic time τ is the sum of the reciprocal lifetimes and the broadening Δv can be calculated:

$$\frac{1}{\tau} = \frac{1}{\tau_1} + \frac{1}{\tau_2} \rightarrow \Delta v = \frac{1}{2\pi} \left(\frac{1}{\tau_1} + \frac{1}{\tau_2} \right).$$

$$\tau_{typ} \sim 10^{-8} \, \text{s} \quad \Delta v_{nat} = \frac{1}{2\pi \tau_{typ}} = \frac{1}{2\pi} 10^8 \sim 16 \, \text{MHz}.$$

Homogeneous broadening - lifetime or natural broadening (cont)

$$g(v_o)_{\text{Lorentz}} = \frac{2}{\pi \, \Delta v},$$

$$\sigma(v_o) = \frac{\lambda^2}{2\pi} \frac{1}{2\pi t_{sp} \Delta v}$$

In ideal case $\tau_2 = t_{sp}$ and $1/\tau_1=0$ (lower level is stationary):

$$\frac{1}{2\pi t_{sp}} = \Delta v, \quad \sigma(v_o) = \frac{(\lambda^2)}{2\pi}.$$

 10^{-11} - 10^{-7} cm² in 0.1 – 10 µm wavelength range.

Wavepacket emissions at random time and the Lorentz-function

 $\sigma(v_0)$ has a typical order of magnitude of 10⁻²⁰-10⁻¹¹cm² (small overlap)

Homogeneous broadening – collision broadening

In gas and fluid can be important with increasing the density of particle (with increasing the pressure). All particle suffer from the same effect, therefore it is a homogeneous effect.

Collision will disturb the light emission process. Two different collisions:

inelastic – particle leaves the excited level \rightarrow lifetime of the excited level decreases \rightarrow similar to the previous case (lifetime broadening)

elastic, there is no transfer between energy levels, there is a disturbance in the mechanism of light emission \rightarrow random phase shift

<u>Homogeneous broadening – collision broadening (cont.)</u>

Harmonic function with random phase shift \rightarrow frequency spectra by Fourier transform \rightarrow again Lorentz-function.

If τ_c is the average time between collisions, the normalized lineshape function:

$$g_{c}(v) = \frac{2\tau_{c}}{1 + (v - v_{0})^{2} 4\pi^{2} \tau_{c}^{2}}$$

$$g_c^{\max}(v) = 2\tau_c(v = v_0)$$

$$\Delta v_c = \frac{1}{\pi \tau_c}$$

 Δv_c depends on the pressure, estimation with drastic simplifications:

"ideal" monatomic gas of radius r, hard spheres, we fix one particle, the others are moving toward the fix particle with V_{avr}^{rel} .

Homogeneous broadening – collision broadening (cont.)

Suppose that the movement of particles toward the fixed particle takes place in a unit cross section cylinder of length v_{avr}^{rel} :

The probability of collision is proportional with the area of the fixed particle: $4r^2\pi$

The number of collisions in unit time is: $4r^2\pi \cdot N \cdot v_{avr}^{rel}$, N is the atomic density.

The average collision time is: $\tau_c = \frac{1}{4\pi r^2 v_{avr}^{rel} N}$. If there is *m* mol gas in *V* volume

$$PV = m \underset{\substack{\uparrow \\ N_A k_B}}{R} T = m N_A k_B T = N V k_B T \qquad (N = \frac{m N_A}{V}) \qquad N = \frac{P}{k_B T}$$

Homogeneous broadening - collision broadening (cont.)

$$\tau_c = \frac{k_B T}{4\pi r^2 v_{avr}^{rel} P} \qquad \Delta v_c = \frac{1}{\pi \tau_c} = \frac{4r^2 v_{avr}^{rel} P}{kT}$$

Collision broadening is proportional to the pressure, $\Delta v_c \sim P$.

Rough guide suitable for estimation:

$$\frac{\Delta v_c}{P} \sim 5 - 10 \frac{MHz}{torr}.$$

Different homogeneous broadening together

The sum of Lorentzian distributions is again a Lorentzian function:

$$\Delta v_{L_1} + \Delta v_{L_2} = \Delta v_L \quad \Delta v_{nat+c} = \frac{1}{2\pi} \left(\frac{1}{\tau_1} + \frac{2}{\tau_c}\right)$$

<u>Crystal field interaction</u> is a "non conventional" collision process, interaction with phonons in solids, but similarly homogeneous effect \rightarrow the lineshape function is Lorentzian. Laser Physics 12

11

Inhomogeneous broadening — Doppler-broadening

Different atoms have different lineshape functions or different center of frequency \rightarrow average lineshape function $\overline{g}(v) = \langle g_{\beta}(v) \rangle$, average with respect to the variable β .

observation

E.g. light emission of atoms moving with velocity v, frequency shift because of the Doppler-effect.

Temperature dependent velocity distribution in the gas

<u>Inhomogeneous broadening — Doppler-broadening</u> (cont.)

p(v)dv is the probability that the velocity of an atom is in the interval of [v, v+dv], the average lineshape function is:

$$\overline{g}(v) = \int_{-\infty}^{\infty} g\left(v - v_0 \frac{v}{c}\right) p(v) dv.$$

In equilibrium the velocity distribution of atoms with mass M at temperature T is the Maxwell - Boltzmann distribution. The probability that the velocity component of the atom is in the range of [v, v+dv] in a given direction (e.g. in the direction of the resonator axis)

$$p_{v}dv = \left(\frac{M}{2\pi kT}\right)^{1/2} \exp\left(-\frac{Mv^{2}}{2kT}\right) dv \quad \text{Gaussian-distribution.}$$
maximum at v=0
FWHM: $|V_{1/2}| = \left(\frac{2\ln(2)kT}{M}\right)^{1/2}$.

Inhomogeneous broadening — Doppler-broadening (cont.)

max imum $v = v_0$

In case the homogeneous broadening $\Delta v_L \ll v_0 \left| \frac{V_{1/2}}{C} \right|$, its effect can be neglected:

$$p_{v}dv = g(v)dv = \frac{c}{v_{o}} \left(\frac{M}{2\pi kT}\right)^{1/2} \exp\left\{-\frac{Mc^{2}}{2k_{B}T} \frac{(v-v_{o})^{2}}{v_{o}^{2}}\right\} dv,$$

where

$$|v| = \frac{c(v_0 - v)}{v_0}, \quad v^2 = \frac{c^2(v_0 - v)^2}{v_0^2}, \quad dv = \frac{c}{v_0} dv.$$

$$\frac{1}{2} = \exp\left\{-\frac{Mc^{2}\left(v_{1/2}-v_{0}\right)^{2}}{2kT v_{0}^{2}}\right\}, \quad v_{1/2}-v_{0} = v_{0}\left(\frac{2kT\ln2}{Mc^{2}}\right)^{1/2},$$

$$\Delta v_{D} = \underbrace{2\left(v_{1/2}-v_{0}\right)}_{because of the symmetry} = \frac{2v_{0}\left(\frac{2kT\ln2}{M}\right)^{1/2}}{c} \quad \text{the FWHM or Doppler broadening.}$$

$$\frac{1}{\lambda} \quad \text{Laser Physics 12}$$

Different inhomogeneous broadenings together

Inhomogeneous distribution of doping materials in solids causes inhomogeneous broadening \rightarrow Gaussian distribution. The superposition of two different Gaussian distribution:

$$\sqrt{\left(\Delta v_{1G}^{2}\right) + \left(\Delta v_{2G}\right)^{2}} = \Delta v_{G}.$$

Homogeneous and inhomogeneous distributions together

Convolution of the Lorentz and the Gauss functions \rightarrow Voight-integral (can be numerically calculated).

Numerical examples - He-Ne laser

 $\Delta v_D = ? \qquad T = 400 \text{ K}, \ \lambda = 633 \text{ nm}, \ M_{Ne} = \frac{20\text{g}}{6 \cdot 10^{23}}, \quad k = 1.38 \cdot 10^{-23} \text{ JK}^{-1}$ $\Delta v_D^{Ne} = 1.5 \cdot 10^9 \text{Hz} = 1.5 \text{ GHz}. \qquad h = 6.63 \cdot 10^{-34} \text{ Js}$

Collision broadening? Can be neglected at 3-4 *torr* pressure! Typical inhomogeneously broadened laser material. Laser Physics 12

Numerical examples - ruby és Nd:YAG laser

T-dependent broadening, because the lattice vibration increases with T! Typical systems with homogeneous broadening. Inhomogeneous effect at $T \sim 0$ because of impurities.

 v/c_0 (1 / λ , cm^{-1}) data,

e.g. at 300 <i>K</i>	Δv_L
Nd:YAG	120 GHz
Ruby	330 GHz

Typical broadenings of different laser materials

	Туре	Gas	Liquid	Solid
Homogeneous	natural	1 kHz - 10 MHz	can be neglected	can be neglected
	collision	5 - 10 MHz/torr	9 THz	-
	crystal field interaction	-	-	300 GHz (300K)
Inhomogeneous	Doppler	50 MHz - 1 GHz	can be neglected	-
	local field	-	15 THz	30 GHz - 15 THz

Problem

Possible decays of E_2 and E_1 in an atom, $t_{sp} = 5$ ms, $\tau_{nr} = 50 \ \mu$ s, $\tau_{20} = 10 \ ps$, $\tau_1 = 15 \ \mu$ s. Calculate τ_{21} and Δv_{nat} of the transition! Is it an ideal choice to use that transition for a laser transition?

